Ruin probabilities for a regenerative Poisson gap generated risk process

نویسندگان

  • Søren Asmussen
  • Romain Biard
چکیده

A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is defined for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F . Asymptotic expressions for the infinite horizon ruin probabilities are given for both lightand the heavy-tailed cases. A basic observation is that the process regenerates at each G-claim. Also an approach via Markov additive processes is outlined, and heuristics are given for the distribution of the time to ruin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity and Ruin Probabilities for Compound Non - Homogeneous Poisson Processes

Periodicity and Ruin Probabilities for Compound Non-Homogenous Poisson Processes Compound non-homogenous Poisson processes with periodic claim intensity rates are stiidied in this work. A risk process related to a short term periodic environment and the periodicity for its compound claim counting process are discussed. The ruin probabilities of compo~md non-homogenous Poisson processes with per...

متن کامل

Ruin Probability in Compound Poisson Process with Investment

We consider that the surplus of an insurer follows compound Poisson process and the insurer would invest its surplus in risky assets, whose prices satisfy the Black-Scholes model. In the risk process, we decompose the ruin probability into the sum of two ruin probabilities which are caused by the claim and the oscillation, respectively. We derive the integro-differential equations for these rui...

متن کامل

Ruin in the Perturbed Compound Poisson Risk Process under Interest Force

In this paper, we study ruin in a perturbed compound Poisson risk process under stochastic interest force and constant interest force. By using the technique of stochastic control, we show that the ruin probability in the perturbed risk model is always twice continuously differentiable provided that claim sizes have continuous density functions. In the perturbed risk model, ruin may be caused b...

متن کامل

The Probabilities of Absolute Ruin in the Renewal Risk Model with Constant Force of Interest

In this paper we consider the probabilities of finiteand infinite-time absolute ruin in the renewal risk model with constant premium rate and constant force of interest. In the particular case of compound Poisson model, explicit asymptotic expressions for the finiteand infinite-time absolute ruin probabilities are given. For the general renewal risk model, we present an asymptotic expression fo...

متن کامل

Fractional Poisson Process: Long-Range Dependence and Applications in Ruin Theory

We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes. AMS 2000 subject classifications: Primary 60G22, 60G55, 91B30; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011